Exercise 64

The left-hand and right-hand derivatives of f at a are defined by

$$
f_{-}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}
$$

and

$$
f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

if these limits exist. Then $f^{\prime}(a)$ exists if and only if these one-sided derivatives exist and are equal.
(a) Find $f_{-}^{\prime}(4)$ and $f_{+}^{\prime}(4)$ for the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

(b) Sketch the graph of f.
(c) Where is f discontinuous?
(d) Where is f not differentiable?

Solution

By the given definitions,

$$
\begin{aligned}
f_{-}^{\prime}(4) & =\lim _{h \rightarrow 0^{-}} \frac{f(4+h)-f(4)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[5-(4+h)]-\frac{1}{5-(4)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1-h)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

and

$$
\begin{aligned}
f_{+}^{\prime}(4) & =\lim _{h \rightarrow 0^{+}} \frac{f(4+h)-f(4)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{5-(4+h)}-\frac{1}{5-(4)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1-h}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1-h}-\frac{1(1-h)}{1-h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1-(1-h)}{1-h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-(1-h)}{h(1-h)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(1-h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{1-h} \\
& =\frac{1}{1}=1
\end{aligned}
$$

Since $f_{-}^{\prime}(4) \neq f_{+}^{\prime}(4), f^{\prime}(4)$ does not exist.

f is discontinuous at $x=0$ and $x=5$ and not differentiable at $x=0, x=4$, and $x=5$.

